Wednesday, December 4, 2013

Nitheen Kumar

C Language Interview Questions 2

16.  Write down the equivalent pointer expression for referring the same element a[i][j][k][l] ?
a[i] == *(a+i)
a[i][j] == *(*(a+i)+j)
a[i][j][k] == *(*(*(a+i)+j)+k)
a[i][j][k][l] == *(*(*(*(a+i)+j)+k)+l)

17.  Which bit wise operator is suitable for checking whether a particular bit is on or off?
The bitwise AND operator. Here is an example:
enum {
KBit0 = 1,
KBit1,

KBit31,
};
if ( some_int & KBit24 )
printf ( “Bit number 24 is ON\n” );
else
printf ( “Bit number 24 is OFF\n” );

18.  Which bit wise operator is suitable for turning off a particular bit in a number?
The bitwise AND operator, again. In the following code snippet, the bit number 24 is reset to zero.
some_int = some_int & ~KBit24;

19.  Which bit wise operator is suitable for putting on a particular bit in a number?
The bitwise OR operator. In the following code snippet, the bit number 24 is turned ON:
some_int = some_int | KBit24;

20. Does there exist any other function which can be used to convert an integer or a float to a string?
Some implementations provide a nonstandard function called itoa(), which converts an integer to string.
#include
char *itoa(int value, char *string, int radix);
DESCRIPTION
The itoa() function constructs a string representation of an integer.
PARAMETERS
value: Is the integer to be converted to string representation.
string: Points to the buffer that is to hold resulting string.
The resulting string may be as long as seventeen bytes.
radix: Is the base of the number; must be in the range 2 - 36.
A portable solution exists. One can use sprintf():
char s[SOME_CONST];
int i = 10;
float f = 10.20;
sprintf ( s, “%d %f\n”, i, f );

21.  Why does malloc(0) return valid memory address ? What's the use?
malloc(0) does not return a non-NULL under every implementation. An implementation is free to behave in a manner it finds suitable, if the allocation size requested is zero. The implmentation may choose any of the following actions:
* A null pointer is returned.
* The behavior is same as if a space of non-zero size was requested. In this case, the usage of return value yields to undefined-behavior.
Notice, however, that if the implementation returns a non-NULL value for a request of a zero-length space, a pointer to object of ZERO length is returned! Think, how an object of zero size should be represented
For implementations that return non-NULL values, a typical usage is as follows:
void
func ( void )
{
int *p; /* p is a one-dimensional array, whose size will vary during the the lifetime of the program */
size_t c;
p = malloc(0); /* initial allocation */
if (!p)
{
perror (”FAILURE” );
return;
}
/* … */
while (1)
{
c = (size_t) … ; /* Calculate allocation size */
p = realloc ( p, c * sizeof *p );
/* use p, or break from the loop */
/* … */
}
return;
}
Notice that this program is not portable, since an implementation is free to return NULL for a malloc(0) request, as the C Standard does not support zero-sized objects.

22.  Difference between const char* p and char const* p
In const char* p, the character pointed by ‘p’ is constant, so u cant change the value of character pointed by p but u can make ‘p’ refer to some other location.
In char const* p, the ptr ‘p’ is constant not the character referenced by it, so u cant make ‘p’ to reference to any other location but u can change the value of the char pointed by ‘p’.

23.  What is the result of using Option Explicit?
When writing your C program, you can include files in two ways. The first way is to surround the file you want to include with the angled brackets < and >. This method of inclusion tells the preprocessor to look for the file in the predefined default location. This predefined default location is often an INCLUDE environment variable that denotes the path to your include files.
For instance, given the INCLUDE variable
INCLUDE=C:\COMPILER\INCLUDE;S:\SOURCE\HEADERS; using the #include version of file inclusion, the compiler first checks the C:\COMPILER\INCLUDE directory for the specified file. If the file is not found there, the compiler then checks the  S:\SOURCE\HEADERS directory. If the file is still not found, the preprocessor checks the current directory.
The second way to include files is to surround the file you want to include with double quotation marks. This method of inclusion tells the preprocessor to look for the file in the current directory first, then look for it in the predefined locations you have set up. Using the #include file version of file inclusion and applying it to the preceding example, the preprocessor first checks the current directory for the specified file. If the file is not found in the current directory, the C:COMPILERINCLUDE directory is searched. If the file is still not found, the preprocessor checks the S:SOURCEHEADERS directory.
The #include method of file inclusion is often used to include standard headers such as stdio.h or stdlib.h.
The #include file include nonstandard header files that you have created for use in your program. This is because these headers are often modified in the current directory, and you will want the preprocessor to use your newly modified version of the header rather than the older, unmodified version.

24.  What is the benefit of using an enum rather than a #define constant?
The use of an enumeration constant (enum) has many advantages over using the traditional symbolic constant style of #define. These advantages include a lower maintenance requirement, improved program readability, and better debugging capability.
1) The first advantage is that enumerated constants are generated automatically by the compiler. Conversely, symbolic constants must be manually assigned values by the programmer.
2) Another advantage of using the enumeration constant method is that your programs are more readable and thus can be understood better by others who might have to update your program later.
3) A third advantage to using enumeration constants is that some symbolic debuggers can print the value of an enumeration constant. Conversely, most symbolic debuggers cannot print the value of a symbolic constant. This can be an enormous help in debugging your program, because if your program is stopped at a line that uses an enum, you can simply inspect that constant and instantly know its value. On the other hand, because most debuggers cannot print #define values, you would most likely have to search for that value by manually looking it up in a header file.

25.  What is the quickest sorting method to use?
The answer depends on what you mean by quickest. For most sorting problems, it just doesn’t matter how quick the sort is because it is done infrequently or other operations take significantly more time anyway. There are three sorting methods in this author’s toolbox that are all very fast and that are useful in different situations. Those methods are quick sort, merge sort, and radix sort.

26.  When should the volatile modifier be used?
The volatile modifier is a directive to the compiler’s optimizer that operations involving this variable should not be optimized in certain ways. There are two special cases in which use of the volatile modifier is desirable. The first case involves memory-mapped hardware (a device such as a graphics adaptor that appears to the computer’s hardware as if it were part of the computer’s memory), and the second involves shared memory (memory used by two or more programs running simultaneously).

27.  When should the register modifier be used?
The register modifier hints to the compiler that the variable will be heavily used and should be kept in the CPU’s registers, if possible, so that it can be accessed faster.

28.  How can you determine the size of an allocated portion of memory?
You can’t, really. free() can , but there’s no way for your program to know the trick free() uses. Even if you disassemble the library and discover the trick, there’s no guarantee the trick won’t change with the next release of the compiler.

29.  When does the compiler not implicitly generate the address of the first element of an array?
Whenever an array name appears in an expression such as
·  array as an operand of the size of operator
·  array as an operand of & operator
·  array as a string literal initializer for a character array
Then the compiler does not implicitly generate the address of the address of the first element of an array.

30.  Why n++ executes faster than n+1 ?
The expression n++ requires a single machine instruction such as INR to carry out the increment operation whereas, n+1 requires more instructions to carry out this operation.

Prv 1 2 3 4 5 6 7 8 9 10 11 Next

Subscribe to get more Posts :